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Objectives: Sinonasal undifferentiated carcinoma (SNUC) is a rare, highly aggressive cancer. Despite aggressive
multimodal therapy, its prognosis remains poor. Because of its locally advanced nature and high propensity for
distant metastasis, we frequently use induction chemotherapy before definitive therapy in patients with SNUC.
However, about 30% of patients do not respond to induction chemotherapy, and lack of response is associated
with a poor survival rate. Therefore, in this study, we performed gene expression analysis of SNUC samples to
identify prognostic markers for induction chemotherapy response.

Materials and methods: Formalin-fixed, paraffin-embedded SNUC tumor samples from previously untreated pa-
tients harvested before induction chemotherapy were used. Gene expression was performed using an oncology
gene expression panel.

Results: We identified 34 differentially expressed genes that distinguish the responders from the non-responders.
Pathway analysis using these genes revealed alteration of multiple pathways between the two groups. Of these
34 genes, 24 distinguished between these two groups. Additionally, 16 gene pairs were associated with response
to induction therapy.

Conclusion: We identified genes predictive of SNUC response to induction chemotherapy and pathways poten-
tially associated with treatment outcome. This is the first report of identification of predictive biomarkers for
response of SNUC to induction chemotherapy, and it may help us develop therapeutic strategies to improve the
treatment outcomes of non-responders.

Chemoresislance

Introduction

Sinonasal undifferentiated carcinoma (SNUC) is a rare cancer that
arises in the nasal cavity and paranasal sinuses. Initially described by
Frierson et al. [1] in 1986, the latest definition of SNUC by the World
Health Organization is “undifferentiated carcinoma of the sinonasal
tract without glandular or squamous features and not otherwise clas-
sifiable.” [2] Due to its tendency to arise near vital structures, such as
the orbit, skull base, and brain, treating patient with SNUC is challen-
ging [3-5]. Treatment usually includes aggressive multimodal therapy
with radiotherapy, chemotherapy, and, in some instances, surgery

[3,6-8]. Despite aggressive management of patients SNUC, their prog-
nosis remains poor, with a median survival time of 22 months (SEER
Cancer Statistics, http://seer.cancer.gov). Thus, development of new
therapies is essential to improving survival of patients with SNUC.
Because of the locally advanced nature of SNUC at presentation and
its high propensity for distant metastasis, we frequently use induction
chemotherapy before definitive therapy in patients with SNUC [9]. A
commonly used chemotherapy regimen is cisplatin (60-80 mg/m? on
day 1) and ctoposide (100-120 mg/m? on days 1-3) administrated in-
travenously every 21 days. Unfortunately, about 30% of the patients did
not have responses to the treatment in a previous study, and lack of
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response is associated with a poor survival rate [9]. To select optimal
treatment options and help us develop new therapeutic strategies for
non-responders, identifying predictive biomarkers of induction che-
motherapy response in patients with SNUC is essential. However, bio-
markers for prediction of induction chemotherapy response have not
yet been identified.

In the study described herein, we performed comprehensive gene
expression analysis of SNUC samples obtained from treatment-naive
patients to identify gene expression signatures that could predict re-
sponse to induction chemotherapy.

Materials and methods
Patients and samples

For this gene expression analysis, tumor samples obtained from 13
previously untreated patients with SNUC were examined. In accordance
with the Declaration of Helsinki, all patients provided written informed
consent. All samples were formalin-fixed paraffin-embedded (FFPE)
and were re-reviewed by a single head and neck pathologist (D.B.).
Patient data were collected from an institutional database. The inclu-
sion criterion for this study was age of 18-80 years. No patients had
received treatment by the time of tissue collection, and they all sub-
sequently received  platinum-based induction chemotherapy
(Supplementary Table 1). Nine of the patients had responses to induc-
tion chemotherapy, and four did not. The patient demographics and
clinical characteristics are summarized in Table 1. The median follow-
up time from presentation at MD Anderson to death or last contact was
31.5 months (range, 8.1-176.1 months). The study was approved by the
MD Anderson Institutional Review Board.

Supplementary data associated with this article can be found, in the
online version, at https://doi.org/10.1016/j.oraloncology.2019.07.
028.

RNA expression analysis

For the gene expression analysis, a targeted RNA sequencing ap-
proach optimized for FFPE samples—the HTG EdgeSeq System (HTG
Molecular Diagnostics, Tucson, AZ)—was employed. This hybridiza-
tion-based system uses nuclease protection probes complementary to
targeted mRNASs for gene expression measurement. In the present study,
the HTG EdgeSeq Oncology Biomarker Panel, which comprises 2560
nuclease protection probes complementary to tumor biology-associated
genes, was used. Sample preparation was automated using an HTG
EdgeSeq Processor. Briefly, 4-pm-thick sections were obtained from the
13 FFPE SNUC samples and treated with HTG Lysis Buffer, which
generates lysates containing sample RNAs. RNAs complementary to the
HTG EdgeSeq Oncology Biomarker Panel probes were captured using
hybridization, and unhybridized RNAs were then removed using S1
nuclease. Captured RNAs were barcoded by PCR, and sequencing
adapters were added. Purified libraries were then quantified using a
KAPA Library Quantification Kit (KAPA Biosystems, Wilmington, MA)
and sequenced using an Ion Torrent Personal Genome Machine System
(Thermo Fisher Scientific, Waltham, MA). BAM files containing gene
expression data were processed using the HTG EdgeSeq host software
program.

Statistical methods and pathway analysis

Differences in gene expression between responders and non-re-
sponders to induction chemotherapy were calculated using an un-
paired, two-tailed t-test as well as the false-discovery rate P value
(calculated using the Benjamini-Hochberg technique). Hierarchical
clustering analysis was performed using Ward’s minimum variance
method for defining distances between clusters. Both analyses were
performed using the JMP Pro 12.0.1 software program (SAS Institute,
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Table 1
Clinical variables of the SNUC patients given induction chemotherapy ac-
cording to treatment response.

No. of patients

Clinical variable Non-
responders

(n=4)

Responders  P'-value

m=9)

Female 0.216
Male

Asian

Black
Hispanic
White
Ethmoid sinus
Frontal sinus
Maxillary
sinus

Nasal cavity
T4a

T4b

No

Yes

No

Yes

IVa

IVb

Ve

No

Yes

Former®
Never
Current
Former
Never

Alive

Dead

No

Yes

No

Yes

Sex
Race 0.765

Primary lumor sile 0.074

— O b OO O =W
—_O Ul o NN

T stage 0.228

Lymph node 1.000
metastasis
Distant metastasis 1.000

Clinical stage 0.295

Carcinogen exposure” 1.000

Smoking history 1.000

Alcohol use 0.776

Vital status 0.228

Disease-related death 1.000

Recurrence 0.228

e OW e B O N WO RO O L RO SRS SN
WS &N WOOWN N =5 b= 00 =0 .h U

? Fisher exact test.
b Lead or radiation.
© One who quite a year or more.

Cary, NC). Receiver operating characteristic (ROC) analysis and a two-
tailed Fisher exact test were performed using the GraphPad Prism 6
software program (GraphPad Software, La Jolla, CA). Sensitivity and
specificity rates and their 95% confidence intervals were calculated
using the Wilson/Brown hybrid method. Pathway analysis was carried
out using the KOBAS 3.0 online tool (http://kobas.cbi.pku.edu.cn), and
results with corrected P values lower than 0.05 were considered sig-
nificant [10-12].

Predictive marker identification

To evaluate potential predictive markers in SNUC samples, the area
under the curve values for all differentially expressed genes (DEGs) in
responders and non-responders was calculated using ROC analysis.
Genes with significant discriminatory power according to this analysis
(P < 0.05) were considered potential predictive markers for SNUC.

After selecting these markers with predictive potential, a pairwise
comparison analysis called top scoring pairs was employed [13].
Briefly, the relative expression values for all possible pairs of the se-
lected genes were calculated. For a given gene pair (e.g., gene A and
gene B), each individual sample was dichotomized according to the
relative expression values (e.g., gene A > gene Bor gene A < gene B).
The predictive power of each gene pair was then assessed using a binary
classification test.
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Table 2
DEGs in responders and non-responders among treatment-naive SNUC patients
after induction chemotherapy.

Mean
Gene symbol P FDR g value Responders Non- log2 FC
responders

1L.20 0.0024368 0.99928865 3.1 1.2 1.9
ALDHIA3 0.0041743 0.99928865 8.6 10.1 -1.5
CCL15 0.0099948 0.99928865 0.6 2.5 -19
SIX1 0.0137840 0.99928865 10.1 8.2 1.9
DNTT 0.0140149 0.99928865 3.0 0.6 2.3
DNAJDS 0.0142033 0.99928865 4.5 3.0 1.5
NR4A3 0.0150770 0.99928865 8.0 9.4 -1.4
FGF20 0.0151008 0.99928865 6.3 22 4.1
ALPL 0.0153340 0.99928865 8.3 10.3 —-2.0
FBXO5 0.0166119 0.99928865 10.0 9.3 0.8
LAMB4 0.0170206 0.99928865 7.2 5.7 1.5
HSPB1 0.0204203 0.99928865 7.5 8.5 -1.0
LIF 0.0207742 0.99928865 8.7 10.6 -1.9
EFNA2 0.0215959 0.99928865 5.7 3.0 2.7
CD19 0.0255671 0.99928865 3.4 1.4 2.1
BMP2 0.0299472 0.99928865 5.7 7.1 -15
GNALl 0.0304962 0.99928865 10.4 10.0 0.4
MTI1X 0.0309037 0.99928865 10.1 11.2 -1.2
CDC34 0.0321759 0.99928865 8.5 7.8 0.7
CCL1 0.0330950 0.99928865 3.1 5.0 -1.9
BAIl 0.0355599 0.99928865 6.3 3.9 2.4
HELLS 0.0391363 0.99928865 10.3 9.6 0.6
L9 0.0396330 099928865 2.3 0.4 1.9
KRT14 0.0409939 0.99928865 8.6 10.5 -19
APAF1 0.0416748 0.99928865 7.7 6.8 0.9
ENDOG 0.0420415 0.99928865 8.5 9.4 -0.9
PIAS4 0.0434295 0.99928865 9.6 9.3 0.4
DLL1 0.0441168 0.99928865 9.7 7.5 2.2
HSPB7 0.0441265 0.99928865 7.1 9.0 -1.9
ITGB4 0.0452133 0.99928865 10.1 11.3 -1.2
CENPF 0.0453197 0.99928865 9.3 8.3 1.0
LATS1 0.0478415 0.99928865 10.6 10.0 0.7
LAMC2 0.0492637 0.99928865 9.0 10.1 -1.1
TNFRSF25 0.0495856 0.99928865 11.0 10.1 0.9

FDR false-discovery rate, FC fold change.
Results

Gene expression profiles associated with induction chemotherapy response in
SNUC patients

To examine gene expression signatures in responders and non-re-
sponders among SNUC patients, we first identified DEGs between these
two poptlations. Due to the small number of samples in both groups
and large number of tested genes, we obtained no significant findings of
false-discovery rate calculation. Therefore, considering only un-
corrected P values with a cutoff less than 0.05, we determined 34 genes
(Table 2) to be DEGs with distinct responses to induction che-
motherapy. Box plots for the three most differentially expressed/the
lowest P values between responders and non-responders are shown in
Fig. 1A; those for the rest of the genes are shown in Supplementary
Fig. 1.

Hierarchical clustering analysis using these 34 genes demonstrated
clearly distinct gene expression profiles for the responders and non-
responders (Fig. 1B). We confirmed the discriminant power of these 34
DEGs in distinguishing SNUC patients with different responses to the
treatment via principle component analysis (Fig. 1C).

We also performed unsupervised clustering analysis to determine
whether the expression pattern for the whole set of 2560 transcripts is
associated with treatment response in SNUC patients. However, no
clear gene expression profile correlated with treatment response in this
analysis (Supplementary Fig. 2).

To further explore differences in molecular signatures between re-
sponders and non-responders, we performed pathway analysis of the 34
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DEGs using KOBAS. All of the statistically significant pathways with
corrected P-values less than 0.05 are listed in Supplementary Table 2
and summarized in Table 3. Pathways related to immune response, cell-
extracellular matrix (ECM) interaction, the phosphoinositide 3-kinase
(PI-3K) cascade, the cell cycle, and apoptosis were significantly en-
riched by DEGs between the responders and non-responders. These
findings suggested that these biologic events are key molecular features
that mediate response to induction chemotherapy in SNUC patients.

Identification of predictive biomarkers for induction chemotherapy response
in SNUC patients

We further searched for predictive biomarkers for induction che-
motherapy response. For this, we performed ROC analysis to determine
which genes had the highest predictive power. Of the 34 DEGs, 24
genes had high predictive power, with area under the curve values
ranging from 1.0 to 0.861 (P < 0.05) (Table 4), suggesting that all 24
genes are potential predictive markers for response to induction che-
motherapy in SNUC patients.

To enhance the potential clinical relevance of our findings, we used
the top scoring pairs algorithm. This algorithm selects pairs of genes
whose relative expression levels between two genes are consistent with
two prognostic groups regardless of the gene expression assay platform
[13]. First, we calculated the differences in gene expression levels for
all possible gene pairs among the 24 genes with high predictive power,
resulting in 276 gene pairs (Supplementary Fig. 3A). We then dichot-
omized all of the SNUC patients in this study according to the difference
in relative expression of the genes in each pair (e.g., gene A > gene B
or gene A < gene B) (Supplementary Fig. 3B). We then examined the
association of this case categorization with the treatment response to
evaluate the prognostic power of these gene pairs (Supplementary
Fig. 3C). We found that 16 gene pairs were significantly associated with
response to induction therapy (Table 5). Specifically, two gene pair-
s—EFNA2-CCL1 and CCL15-CD19—had maximum sensitivity and spe-
cificity: lower expression of EFNAZ2 than of CCLI and higher expression
of CCL15 than of CD19 were highly associated with chemotherapy re-
sistance (P = 0.0014 and P = 0.0014, respectively).

Discussion

The aim of this study was to discover molecular characteristics in-
volved in treatment resistance and identify predictive markers to dis-
tinguish responders from non-responders to induction chemotherapy in
SNUC patients. We found alteration of multiple signaling pathways
between the two groups. We also discovered potential gene signatures
and predictive biomarkers for induction chemotherapy response in
these groups of patients.

Our first approach was to determine DEGs between responders and
non-responders to identify potential predictive markers for induction
chemotherapy response. The 34 DEGs we identified distinguished the
responders from the non-responders in both a hierarchal cluster ana-
lysis and principle component analysis, demonstrating that this set of
genes may be associated with the chance of response to induction
chemotherapy in SNUC patients. On the other hand, our attempt to
distinguish the responders and non-responders according to the ex-
pression pattern for the whole set of transeripts using unsupervised
cluster analysis was not successful, most likely due to the small sample
size.

Pathway analysis of these 34 DEGs using KOBAS demonstrated that
pathways related to the immune system, cell-ECM interaction, PI-3K
signaling, the cell cycle, and apoptosis were significantly different be-
tween the responders and non-responders. Although researchers have
studied the roles of PI-3K signaling, the cell cycle, and apoptosis in
cisplatin-based chemotherapy [14-17], little is known about how the
immune system affects cisplatin resistance. However, in one report, the
authors stated that effector CD8"' T cells abrogate tumor-associated
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Fig. 1. DEGs between the responders and non-responders in the SNUC patients. Thirty-four DEGs were analyzed. A Gene expression box plots for the three genes with
the lowest P values between responders and non-responders are listed. B Hierarchical cluster analysis of the 34 genes demonstrating clearly distinct gene expression
profiles between the responders and non-responders. C Principle component analysis of the 34 genes confirming the complete distinction between the responders and

non-responders.

Table 3
Pathways enriched by DEGs in responders and non-responders among SNUC patients after induction chemotherapy.
Pathway Database Pathway 1D P Corrected P Input genes
Cytokine-cytokine receptor interaction KEGG Pathway hsa04060 2.96E-09 1.91E-07 IL9, CCL1, CCL15, IL20, BMP2, LIF, TNFRSF25
Type I hemidesmosome assembly Reactome R-1ISA-446107 2.06E-07 5.53E-06 ITGB4, KRT14, LAMC2
PI3K/AKL signaling pathway KLEGG Pathway hsa04151 4.69E-07 1.09E-05 LAMB4, ITGB4, LAMC2, EFNA2, CD19, FGF20
Amoebiasis KEGG Pathway hsa05146 1.92E-06 3.63E-05 GNAL1, HSPB1, LAMB4, LAMC2
Juk/STAT signaling pathway KEGG Pathway hsa04630 1.12E-05 0.000168 PIAS4, 1120, IL9, LIF
ECM-receptor interaction KEGG Pathway hsa04512 5.36E-05 0.000611 ITGB4, LAMB4, LAMC2
Small cell lung cancer KEGG Pathway hsa05222 6.15E-05 0.000679 APAF1, LAMB4, LAMC2
Cell junction organization Reactome R-HSA-446728 6.58E-05 0.000706 ITGB4, KRT14, LAMC2
Cytokine signaling in immune system Reactome R-HSA-1280215 0.000185 0.001676 TNFRSF25, 1L20, IL9, FGF20, LIF
Cell-cell communication Reactome R-HSA-1500931 0.000216 0.001905 ITGB4, KRT14, LAMC2
Immune system Reactome R-HSA-168256 0.000334 0.002754 CDC34, IL9, IL20, LIF, TNFRSF25, CD19, FGF20
Laminin interactions Reactome R-HSA-3000157 0.000346 0.002807 ITGB4, LAMC2
Signaling by interleukins Reactome R-HSA-449147 0.000381 0.003060 IL20, IL9, FGF20, LIF
Integrin signaling pathway PANTHER P00034 0.000395 0.003141 ITGB4, LAMB4, LAMC2
Focal adhesion KEGG Pathway hsa04510 0.000727 0.004930 ITGB4, LAMB4, LAMC2
Nonintegrin membrane-ECM intleractions Reactome R-1SA-3000171 0.001256 0.007337 ITGB4, LAMC2
ECM organization Reactome R-115A-1474244 0.001997 0.010348 ITGB4, BMP2, LAMC2
p53 pathway PANTHER P00059 0.002201 0.010935 APAF1, ADGRB1
Collagen formation Reactome R-HSA-1474290 0.002707 0.012895 ITGB4, LAMC2
Apoptosis signaling pathway PANTHER P00006 0.004009 0.017198 APAFI1, ENDOG
Cell cycle Reactome R-11SA-1640170 0.015077 0.036593 CENPF, PIAS4, FBXOS5

PI3K phosphoinositide 3-kinase, STAT signal transducer and activator of transcription.
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Table 4

DEGs between responders and non-responders identified using ROC analysis.
Gene symbol AUC SE p
HSPB1 1.000 0 0.005
ALDHI1A3 0.972 0.042 0.009
LAMB4 0.972 0.042 0.009
1IL.20 0.944 0.066 0.014
ALPL 0.917 0.085 0.021
NR4A3 0.917 0.080 0.021
FBXO05 0.917 0.080 0.021
KRT14 0.903 0.089 0.025
DNTT 0.903 0.087 0.025
CCL15 0.889 0.111 0.031
1TGB4 0.889 0.111 0.031
LAMC2 0.889 0.095 0.031
CD19 0.889 0.111 0.031
CDC34 0.889 0.094 0.031
DNAJB8 0.889 0.105 0.031
EFNA2 0.889 0.095 0.031
FGF20 0.889 0.111 0.031
SIX1 0.889 0.111 0.031
1.9 0.875 0.102 0.037
CCL1 0.861 0.106 0.045
HSPB7 0.861 0.107 0.045
CENPF 0.861 0.106 0.045
GNAI11 0.861 0.106 0.045
TNFRSF25 0.861 0.132 0.045

AUC area under the curve, SE standard error.
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resistance in different ways. First, a stiff ECM acts as physical barrier to
diffusion of chemotherapeutic drugs [19-21]. Second, interaction of the
ECM with cancer cells via integrins activates multiple signaling path-
ways. For example, Sethi et al. [22] showed that the ECM inhibited
apoptosis of small cell lung cancer (SCLC) cells induced by DNA-da-
maging drugs via B1 integrin. Moreover, this protective effect of 1
integrin was meditated by activation of PI3-K [23]. Because overriding
DNA damage-induced apoptosis in SCLC cells was completely blocked
by a function-blocking anti-p1 integrin antibody [22], 1 integrin may
be an attractive therapeutic target for non-responders in SNUC patients,
too.

Surprisingly, the ROC analysis demonstrated that 24 of the 34 DEGs
individually differentiated the responders from the non-responders. In
particular, the expression of IL20 and FGF20 differed greatly between
the two groups, suggesting that these genes are useful prognostic
markers for SNUC in an actual clinical setting.

Despite our success of identifying predictive markers for induction
chemotherapy response in SNUC patients, the use of single transcripts
as biomarkers has many limitations, since measurement of absolute
transcript expression is methodology-dependent and relies on normal-
ization through housekeeping genes. This compromises the establish-
ment of reliable cutoff points for sample categorization and hampers
the translation of gene expression-based biomarker studies to the bed-
side. Therefore, we employed a simple pairwise comparison of genes
(top scoring pairs analysis) to counteract these limitations. Other in-

Table 5
Gene pairs significantly associated with response of SNUC to induction chemotherapy.

Gene pair Test result Non-responders (n = 4) Responders (n = 9) p Sensilivity rate (95% CI) Specificity rate (95% CI)

EFNA2-CCL1 EFNA2 < CCL1 4 0 0.0014 1.00 (0.51-1.00) 1.00 (0.70-1.00)
EFNA2 > CCL1 0 9

CCL15-CD19 CCL15 > CD19 4 0 0.0014 1.00 (0.51-1.00) 1.00 (0.70-1.00)
CCL15 < CD19 0 9

ALPL-FBX05 ALPL > FBXO5 4 1 0.0070 1.00 (0.51-1.00) 0.89 (0.56-0.99)
ALPL < FBXOS5 0 8

CCL15-DNTT CCL15 > DNTT 4 1 0.0070 1.00 (0.51-1.00) 0.89 (0.56-0.99)
CCL15 < DNTT 1] 8

DNAJB8-CCL1 DNAJB8 < CCL1 4 1 0.0070 1.00 (0.51-1.00) 0.89 (0.56-0.99)
DNAJB8 > CCL1 0 8

ALPL-CENPF ALPL > CENPF 4 1 0.0070 1.00 (0.51-1.00) 0.89 (0.56-0.99)
ALPL < CENPF ] 8

CCL15-1L9 CCL15 > IL9 4 1 0.0070 1.00 (0.51-1.00) 0.89 (0.56-0.99)
CCL15 < IL9 0 8

1L.20-CCL15 1IL20 < CCL15 3 0 0.0140 0.75 (0.30-0.99) 1.00 (0.70-1.00)
1L20 > CCL15 1 9

ITGB4-TNFRSF25 ITGB4 > TNFRSF25 3 0 0.0140 0.75 (0.30-0.99) 1.00 (0.70-1.00)
ITGB4 < TNFRSF25 1 9

ALDHI1A3-FBXO5 ALDH1A3 > FBXO0S5 3 0 0.0140 0.75 (0.30-0.99) 1.00 (0.70-1.00)
ALDHIA3 < FBXO0S5 1 9

FGF20-CCL1 FGF20 < CCL1 3 0 0.0140 0.75 (0.30-0.99) 1.00 (0.70-1.00)
FGF20 > CCL1 1 9

CCL15-EFNA2 CCL15 > EFNA2 3 0 0.0140 0.75 (0.30-0.99) 1.00 (0.70-1.00)
CCL15 < EFNA2 1 9

HSPB1-CDC34 HSPB1 > CDC34 4 2 0.0210 1.00 (0.51-1.00) 0.78 (0.45-0.96)
HSPB1 < CDC34 0 7

FBX05-KRT14 FBXOS < KRT14 4 2 0.0210 1.00 (0.51-1.00) 0.78 (0.45-0.96)
FBXO5 > KRT14 0 7

NR4A3-CENPF NR4A3 > CENPF 4 2 0.0210 1.00 (0.51-1.00) 0.78 (0.45-0.96)
NR4A3 < CENPF 0 7

ALDHI1A3-CENPF ALDHIA3 > CENPF 4 2 0.0210 1.00 (0.51-1.00) 0.78 (0.45-0.96)
ALDHI1A3 < CENPF 0 7

CI confidential interval,
" Fisher exact test.

fibroblast-mediated cisplatin resistance of ovarian cancer [18]. There-
fore, investigating whether CD8* T cells are more frequently found in
responders than in non-responders among SNUC patients may be in-
teresting. We have more knowledge about how the ECM is involved in
chemoresistance than in the immune system. The ECM can affect drug
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vestigators have used this approach, which has the benefit of being
independent of normalization by housckeeping genes and establish-
ment of cutoff points for using a small number of analytes [24,25]. By
using this approach, we identified 16 gene pairs with potential pre-
dictive value for induction chemotherapy response in SNUC patients.



Y. Takahashi, et al

Although our findings require further extensive validation due to the
small sample size, the inherent simplicity of using gene pairs as bio-
markers will facilitate the verification and comparison of these findings
at different institutions. We believe that the 16 gene pairs we identified
should play an important role in selecting the optimal therapeutic ap-
proach to patients with SNUC. There is a general agreement in the
literature that multimodal therapy is needed for treatment of patients
with SNUC. The specific sequence of therapy however is largely de-
bated. Our rationale for using induction chemotherapy is the relatively
high risk of distant metastasis and the known value of induction che-
motherapy in reducing such risk [3,4,26-28]. Another advantage to
induction chemotherapy is its potential role in predicting radiation
sensitivity when choosing a primary treatment modality. Recently, we
reported that in SNUC patients who achieved a favorable response to
induction chemotherapy, definitive chemoradiotherapy results in im-
proved survival compared with those who undergo definitive surgery.
In patients who do not achieve a favorable response to induction che-
motherapy, surgery when feasible scems to provide a better chance of
discase control and improved survival [9]. Therefore establishing
markers of treatment response is crucial in selecting optimal ther-
apeutic strategies for patients with SNUC.

In summary, we found that several pathways differed significantly
between responders and non-responders to induction chemotherapy in
SNUC patients. We also identified 34 genes that distinguished between
the two groups of patients. Of these 34 genes, 24 individually identified
responders and non-responders. Additionally, we identified 16 gene
pairs that were significantly associated with response of patients with
SNUC to induction chemotherapy. To the best of our knowledge, this is
the first report of identification of predictive biomarkers for induction
chemotherapy response in SNUC patients and may help us develop new
therapeutic strategies to improve treatment outcomes in non-re-
sponders.
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